Сделай сам своими руками
Лайфхаки, мастер-классы, полезные советы, рецепты.
Добавить мастер-класс
Главная » Электроника » Блок питания своими руками » Лабораторный блок питания

При создании различных электронных устройств, рано или поздно, встаёт вопрос о том, что использовать в качестве источника питания для самодельной электроники. Допустим, собрали вы какую-нибудь светодиодную мигалку, теперь её нужно от чего-то аккуратно запитать. Очень часто для этих целей используют различные зарядные устройства для телефонов, блоки питания компьютеров, всевозможные сетевые адаптеры, которые никак не ограничивают ток, отдаваемый в нагрузку.

А если, допустим, на плате этой самой светодиодной мигалки случайно остались незамеченными две замкнутые дорожки? Подключив её к мощному компьютерному блоку питания собранное устройство легко может сгореть, если на плате имеется какая-либо ошибка монтажа. Именно для того, чтобы не случалось таких неприятных ситуаций, существуют лабораторные блоки питания с защитой по току. Заранее зная, какой примерно ток будет потреблять подключаемое устройство, мы можем предотвратить короткое замыкание, и, как следствие, выгорание транзисторов и нежных микросхем.

В этой статье рассмотрим процесс создания именно такого блока питания, к которому можно подключать нагрузку, не боясь, что что-нибудь сгорит.

Схема блока питания

Схема содержит в себе микросхему LM324, которая совмещает в себе 4 операционных усилителя, вместо неё можно ставить TL074. Операционный усилитель ОР1 отвечает за регулировку выходного напряжения, а ОР2-ОР4 следят за потребляемым нагрузкой током. Микросхема TL431 формирует опорное напряжение, примерно равное 10,7 вольт, оно не зависит от величины питающего напряжения. Переменный резистор R4 устанавливает выходное напряжение, резистором R5 можно подогнать рамки изменения напряжения под свои нужны. Защита по току работает следующим образом: нагрузка потребляет ток, который протекает через низкоомный резистор R20, который называется шунтом, величина падения напряжения на нём зависит от потребляемого тока. Операционный усилитель ОР4 используется в качестве усилителя, повышая малое напряжение падения на шунте до уровня 5-6 вольт, напряжение на выходе ОР4 меняется от нуля до 5-6 вольт в зависимости от тока нагрузки. Каскад ОР3 работает в качестве компаратора, сравнивая напряжение на своих входах. Напряжение на одном входе задаётся переменным резистором R13, который устанавливает порог срабатывания защиты, а напряжение на втором входе зависит от тока нагрузки. Таким образом, как только ток превысит определённый уровень, на выходе ОР3 появится напряжение, открывающее транзистор VT3, который, в свою очередь, подтягивает базу транзистора VT2 к земле, закрывая его. Закрытый транзистор VT2 закрывает силовой VT1, размыкая цепь питания нагрузки. Происходят все эти процессы за считанные доли секунды.

Резистор R20 стоит взять мощностью ватт на 5, чтобы предотвратить его возможный нагрев при долгой работе. Подстроечный резистор R19 задаёт чувствительность по току, чем больше его номинал, тем большей чувствительности можно добиться. Резистор R16 настраивает гистерезис защиты, рекомендую не увлекаться с повышением его номинала. Сопротивление 5-10 кОм обеспечит чёткое защёлкивание схемы при срабатывании защиты, более большое сопротивление даст эффект ограничения по току, когда напряжение не выходе будет пропадать не полностью.

В качестве силового транзистора можно применить отечественные КТ818, КТ837, КТ825 или импортный TIP42. Особое внимание стоит уделить его охлаждению, ведь вся разница входного и выходного напряжение будет рассеиваться в виде тепла на этом транзисторе. Именно поэтому не стоит использовать блок питания на малом выходном напряжении и большом токе, нагрев транзистора при этом будет максимальным. Итак, перейдём от слов к делу.

Изготовление печатной платы и сборка

Печатная плата выполняется методом ЛУТ, который неоднократно описывался в интернете.

На печатной плате добавлен светодиод с резистором, которые не указаны в схеме. Резистор для светодиода подойдёт номиналом 1-2 кОм. Этот светодиод включается при срабатывании защиты. Также добавлены два контакта, обозначенные словом «Jamper», при их замыкании блок питания выходит из защиты, «отщёлкивается». Кроме того, добавлен конденсатор 100 пФ между 1 и 2 выводом микросхемы, он служит для защиты от помех и обеспечивает стабильную работу схемы.

Скачать плату:
pechatnaya-plata.zip [20.41 Kb] (cкачиваний: 2881)

Настройка блока питания

Итак, после сборки схемы можно приступить к её настройке. Первым делом, подаём питание 15-30 вольт и замеряем напряжение на катоде микросхемы TL431, оно должно быть примерно равно 10,7 вольт. Если напряжение, подаваемое на вход блока питания, небольшое (15-20 вольт), то резистор R3 стоит уменьшить до 1 кОм. Если опорное напряжение в порядке, проверяем работу регулятора напряжения, при вращении переменного резистора R4 оно должно меняться от нуля до максимума. Далее, вращаем резистор R13 в самом крайнем его положении возможно срабатывание защиты, когда этот резистор подтягивает вход ОР2 к земле. Можно установить резистор номиналом 50-100 Ом между землёй и выводом крайним выводом R13, который подключается к земле. Подключаем какую-либо нагрузку к блоку питания, устанавливаем R13 в крайнее положение. Повышаем напряжение на выходе, ток будет расти и в какой-то момент сработает защита. Добиваемся нужной чувствительности подстроечным резистором R19, затем вместо него можно впаять постоянный. На этом процесс сборки лабораторного блока питания закончен, можно установить его в корпус и пользоваться.

Индикация

Для индикации выходного напряжения весьма удобно использовать стрелочную головку. Цифровые вольтметры хоть и могут показывать напряжение вплоть до сотых долей вольта, постоянно бегущие цифры плохо воспринимаются глазом человека. Именно поэтому рациональнее использовать именно стрелочные головки. Сделать вольтметр из такой головки очень просто – достаточно поставить последовательно с ней подстроечный резистор номиналом 0,5 – 1 МОм. Теперь нужно подать напряжение, величина которого заранее известна и подстроечным резистором подстроить положение стрелки, соответствующее прикладываемому напряжению. Успешной сборки!


Прокомментировать
  • bowtiesmilelaughingblushsmileyrelaxedsmirk
    heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
    winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
    worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
    expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
    disappointedconfoundedfearfulcold_sweatperseverecrysob
    joyastonishedscreamtired_faceangryragetriumph
    sleepyyummasksunglassesdizzy_faceimpsmiling_imp
    neutral_faceno_mouthinnocent
4 минус один =
Комментарии (7)
  1. михаил панарин
    #1 михаил панарин Гости 1 апреля 2018 16:16
    1
    Есть огромное желание купить светомузыкальную приставку времён СССР на четыре цвета.Но в этом плане у меня соображай нету.Как и радиодеталей.
    1. Гость Ринат
      #2 Гость Ринат Гости 8 апреля 2018 09:42
      2
      Есть советские радиодетали и схемы.
    2. Гость Сергей
      #3 Гость Сергей Гости 16 апреля 2018 00:18
      1
      есть цветомузыка.покупал набор и сам паял.экран-рассеиватель небольшой примерно30на 35см.. работала .много лет лежит. пиши в почту если что.могу сделать фото.
  2. Гость Slava
    #4 Гость Slava Гости 28 мая 2019 12:07
    2
    А какие пульсации на выходе устройства?
  3. Гость Евгений
    #5 Гость Евгений Гости 2 января 2020 16:47
    0
    Здравствуйте ! Подскажите пожалуйста, как подстроить эту схему к блоку питания на 9 вольт. Мне большое напряжение не нужно.
  4. Гость Евгений
    #6 Гость Евгений Гости 2 января 2020 16:51
    0
    Есть трансформатор, который выдает 7,5 вольт, 2,5 ампера. После выпрямителя, на электролите 9 вольт. Подскажите пожалуйста, подойдет ли эта схема, и что нужно в ней изменить ? Спасибо !
  5. Oleksandr
    #7 Oleksandr Гости 26 января 2020 19:19
    0
    смд плата єсть
«Сделай сам, сделать своими руками» - inwit.ru сайт интересных самоделок, часто сделанных из предметов в домашних условиях и подручных материалов. Можно узнать много нового и интересного в опублекованных решениях умельцев и изобретателей! Пошаговые мастер-классы с описанием и фото, лайфхаки, технологии - все, что нужно для рукоделия настоящему мастеру или просто умельцу с пытливым умом. Поделки самой разнообразной сложности, не малый выбор идейна и правлений для вашего творчества. И просто интересно узнать необычные и простые решения для повседневной жизни.
© inwit.ru, 2009 - 2023
Ваш E-Mail: Ваш пароль:
Войти через:
Вконтакте Одноклассники